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ABSTRACT 

A linear system with N degrees of freedom subjected to a set 

of nonconservative forces which depend linearly on generalized 

coordinates is considered. Several theorems concerning the 

destabilizing effect induced by the presence of small forces which 

depend on generalized velocities are established. These forces 

may be due to viscous damping and gyroscopic effects. 
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1. Introduction 

The destabilizing effect of viscous damping in a linear, dynamic 

system with two degrees of freedm, subjected to nonconservative 

forces which depend on generalized coordinates, was first noted by 

Ziegler [l]'. 

Herrmann and Jong [3,41. 

the framework of theorems of sufficient generality. 

whether a more general system with many degrees of freedom can also 

exhibit such behavior. Moreover, from examples worked out in 

[1,2,3,4], it is not clear whether other velocity dependent forces, 

(such as Coriolis forces on vibrating pipes conveying fluid, or 

purely gyroscopic forces I S  , 6 3 ,  can have similar effects. 

This problem was further explored by Bolotin L21, and 

However, this effect was not placed into 

Nor was it shown 

The purpose of the present study is to prove that the critical 

load of an undamped systemwith N degrees of freedom subjected to 

nonconservative forces, which are linear functions of the generalized 

coordinates, is an upper bound for the critical load of the same 

system when, in addition, some sufficiently small forces which are 

linear functions of the generalized velocities are also nresent. 

Therefore, it is concluded that in a general nonconservative system 

with N degrees of freedom not only slight viscous damping but all 

sufficiently small velocity dependent forces may have a destabilizing 

effect. 

* 
Numbers in brackets refer to references listed at the end of 

this paper. 



Y 

2 

2. Statement of the Problem 

We consider an N-degree-of-freedom, linear, dynamic system 

represented by generalized coordinates q ; j = 1,2,.. .,N . The 
system is assumed to be holonomic and autonomous, and is subjected 

j 

to a set of generalized forces, Q = Qj(F) ; j = 1,2, ..., N , which 
are defined as linear functions of a real, finite parameter F. 

J 

This parameter, (0 S F "), is associated with the magnitude of 

the externally applied forces; Q - 0 for F = 0. 
1 

, be the = 0 , (j = 1,2 ,..., N ; qj i z d t  ) 

1 the generalized 

dqJ 
J = ij 

Let q 

equiiibrium state of the system. With 24 = h 
3.k 

mass matrix, and V - - 2 f xjk qj qk the strain energy function, 
j ,k=L 

the equations of motion of the undamped system may be written as 

where the summation convention on all repeated indices is implied 

and will be employed in the sequel. 

, are given as 
Qj 

Let us assume that the generalized forces, 

linear functions of the generalized coordinates; 

where K = CK 

parameter. 

tion of the undamped system which we assume to poosesa W distinct, 

3 is a noasymmetric matrix, and F a real, finite 
jk 
For F = 0, (1) represent the equations of free oscilla- 

non-zero frequencies. 
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In conjunction with (1) ye shal l  consider the following linear 

system 
- .. 

'jk q k + t: G jk h k + K ~ ~  qk = Q~ ; j = i , ~  ,..., N , (2) - 
where e is an infinitesimal quantity, G = 

symmetric matrix with prescribed constant elements. 

equations (2) reduce to equations (1). 

a general non- 

For 8 = 0 , 

In the following sections we shall prove that the critical load 

of system (1) is an upper bound for the critical load of system (2) 

when O(e2) can be neglected in comparison with O(U). 
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3. Destabilizing Effect of Sl ight  Damping 

L e t  us f i r s t  consider the e f f ec t  of s l i g h t  viscous damping. 

Thus w e  assume tha t  G = [G 

matrix. 

1 i s  a symnetric, pos i t ive  d e f i n i t e  
j k  

iw . We take solut ions of (1) and (2) i n  t h e  form qk = '4, e , 
i = f i  , and obtain from (1) and (2), respect ively 

j , k  = 1,2,...*N . 
Systems (3) and (4) are each a set of linear, homogeneous 

equations i n  \. 
only i f  the detezminant of the coef f ic ien ts  of A,,  i n  each set, i s  

They have, therefore,  nont r iv ia l  solut ions i f  and 

equal t o  zero. These conditions y ie ld  

d e t  l a  I = O ,  

det  I a + e(iw)G 1 = 0 , 
Jk 

j k  j k  

where a = - o? H + (Rjk - FKJk) and de t  I a I denotes the 
j k  j k  j k  

determinant of the  matrix La 1. 
jk  

For F - 0 , equation ( 5 )  yields  the na tura l  frequencies of the  

free vibra t ion  of the undamped system. 

quencies, (+ < 9' < ... < u) ) , are d i s t i n c t  and non-zero. We 

now increase F and assume t h a t  for a c e r t a i n  value of F, say F 

equation (5) y ie lds  a double non-zero frequency. 

t h a t ,  fo r  F = F 

We assume tha t  these f re -  

a a 
N 

e '  
Let us suppose 

' 
, 9' is equal t o  %' (see Figure l ( a ) ) ,  while a l l  e 
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o the r  (N-2) frequencies of the sys t em are d i s t i n c t  and non-zero. If 

P is  now increased beyond t h i s  c r i t i c a l  value Fe , equation ( 5 )  w i l l  

y i e ld  a p a i r  of complex conjugate roo t s  and, consequently, the system 

w i l l  o s c i l l a t e  with an exponentially increasing amplitude ( f l u t t e r ) .  

We s h a l l  r e f e r  t o  Fe as the  undamped cri t ical  load. 

L e t  us now consider equation ( 6 ) .  For F - 0,  the  roots  of t h i s  

equation are a l l  located on the left-hand s ide  of the imaginary axis 

i n  the  complex i W  plane. 

approaches the imaginary l i ne ,  and for a c e r t a i n  value of F, say Fd , 

equation ( 6 )  yie lds  a real value f o r  

now increased beyond t h i s  c r i t i c a l  value Fd , one of the  roots of 

( 6 )  becomes complex with negative imaginary par t .  

therefore ,  loses  s t a b i l i t y  by f l u t t e r ,  

damped cr i t ical  load. 

As w e  increase F, one of these roots  

(see Figure l (b)) ,  I f  P is 

The system, 

We s h a l l  r e f e r  t o  Fd as the  

I n  the sequel we w i l l  f i r s t  study a system with two degrees of 

freedom and then extend our results t o  more general  systems. 

A. Systems with two degrees of freedom 

W e  expand the frequency equation of the  damped system as follows 

2 

- Sa Ua de t  I G 1 ; j , k  = 1 , 2  , (7) j k  

where akj i s  the cofactor  c71 of t h e  element a 

Moreover, w e  assume t h a t  d e t  1 G 
w i l l  be discussed later). 

i n  the de t  I a I , 
j k  j k  

I # 0 (the case of de t  1 G. 1 = 0 
jk Jk 

Then, f o r  de t  I G I f i n i t e  and 6 of 
j k  
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in f in i tes imal  order, we may neglect the  last term on the right-hand 

s ide  of equation (7) and obtain 

2 

Theor- 1: 

The undamped c r i t i c a l  load, F is an upper e ’  
bound fo r  the damped c r i t i c a l  load, Fd , when O ( P )  

can be neglected in  comparison with O(e). 

Proof: 

For F - P , equation ( 8 )  has one real root ,  d 

W = W , and one camplex root with pos i t ive  imaginary 

par t .  Therefore, for F = Pd and = , d e t  I a I and 
- 

j k  
2 

ak’ a r e  both r ea l  and we must have 1 Gjk 
j ,k=l 

However, d e t  I a 1 - 0 cannot admit real roots  if 
j k  

F > F . Therefore Pd s F . 
e e 

Let us note tha t  Fd can equal Fe if and only if the r e a l  root of 

(10) can be made equal t o  the double root of (9) for F = Fe . This, 

of course, depends on t h e  o ther  parameters of the system and may not 

always be achieved L41. 

We now r e t r a c t  t o  equation (7) and consider the case when 
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d e t  I G .  

t w o  degrees of freedom is now given by equation ( 8 ) ,  independently 

of the order of magnitude of e . 
similar t o  t h a t  used i n  t he  proof of theorem 1,  w e  conclude t h a t  t h e  

c r i t i ca l  load of the undamped s y s t e m  is  an upper bound f o r  t h a t  of 

the  damDed system, no matter what the order of magnitude of 6 may 

be. Therefore, w e  s t a t e  the following theorem. 

I = 0 . The frequency equation of the damped system with 
Jk 

Following the l i n e  of reasoning 

Theorem 2: 

The c r i t i c a l  load, F of the  undamped system e '  

v i t h  two degrees of freedom i s  an upper bound f o r  t h e  

c r i t i ca l  load, F of the  damped system f o r  a l l  d '  

f i n i t e  values  of E when de t  I G .  1 = 0 . 
Jk  

B. System with N degrees of freedom 

The Droof of theorem 1 was an immediate consequence of a property 

of the  frequency equation of the damped system with two degrees of 

freedom. 

than two degrees of freedom. 

l ine of reasoning. 

The problem becomes more complicated i f  the system has more 

However, one may st i l l  use a s imi l a r  

'de expand equation ( 6 ) ,  co l l ec t  the  terms of equal power i n  8 , 

and obtain 

N 

+ O(E2) + ... , j , k  = 1,2 ,..., N . (11) 

The f i r s t  term on t he  right-hand s i d e  of this  equation is a 
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polynomial of degree N i n  u? and may be wr i t t en  as 

N det  I a P(w2) P P + PN u?("l) + ... + Po . j k  N 

N 

Similar ly ,  t h e  term 1 G akj , which is a polynaeial of degree 
jk 

li ,k=1 

(N-1) i n  2 ,  can be wr i t t en  as 

N 

Therefore, equation (11) becomes 

de t  I a 

We neglect O(e2) and higher i n  equation (12) and obta in  

+ S ( i W ) G  1 = P ( 2 )  + ia R ( P )  + O(S') + ... (12) 
jk Sk 

f o r  the frequency equation of system (2). We now set U, = + isV 

and s u b s t i t u t e  i n t o  P(w2) and R ( P )  t o  obtain 

Theref ore,  equation (1 3) becomes 

Neglecting terms of order higher than e , w e  must have 
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y = -  go, 
2P (A2) 

The f i r s t  equation i n  (14) is the frequency equation of t he  

undamped system and the  second equation defines,  t o  the f i r s t  order 

of approximation i n  8 

c i e s  of t h e  undamped system. 

ind ica tes  t h a t  the perturbation method breaks down when P(A') = 0 

admits double roots. 

the  e f f ec t  of s l i g h t  damning on the frequen- 

The cons t ra in t  given by P'(A2) # 0 

For F = 0 ,  t he  roots  of equation P(A2) = 0 

are a l l  real and d i s t i n c t .  Thus i n  t h i s  case, t o  the f i r s t  order a€ 

approximation i n  , the  roots  of equation (13) are 

where l2 a re  r e a l ,  pos i t ive  roots of P ( l a )  = 0 . 
perform osc i l l a t ions  only with an exponentially decaying ampli tude 

and, therefore ,  a l l  yk  ; k = 1,2, ..., N are pos i t ive ,  real nmbers.  

The system can k 

W e  s h a l l  now assume tha t  the damped system is stable for a l l  

d F F and consider the following cases: 

(a) F < F d < F e ,  

(b 1 F e < F < F d ;  F e < F d .  

For case (a), P(i2) = 0 yields  N d i s t i n c t  roots.  From equations 
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(15) we then obtain Yk ; k = 1,2 , .  ..,N , which are, by our assumption, 

a l l  pos i t ive ,  real numbers. 

For case (b), P(1') = 0 has, a t  least, one p a i r  of complex - 
conjugate roots.  

(15) obtain 

W e  denote these roots  by %,2 = (Q' * iB) and franr 

RC(@ f i B ) Y  
f $,2 = f (a f is) - is 

2P'C(@ f iP)=I ' 

which indicates  tha t ,  f o r  F > F the damped system admits, a t  e '  

least, one complex frequency with negative imaginary par t .  This, 

therefore ,  contradicts  the  assumption tha t  the system is s t ab le  f o r  

Fd > Fe . 
contrltdiction. 

We are thus forced to take Fd 5 F i n  order t o  remove the e 

L e t  us note tha t ,  f o r  F - Fd = Fe , equations (15) can be used 

only f o r  the d i s t i n c t  roots  of P(ha) = 0 . 
which w a s  introduced i n  t h i s  section, breaks down i f  P'(A2) = O(S) 

while It@') is non-zero, We sha l l  not ,  however, concern ourselves 

with a de ta i led  study of t h i s  case here  and simply admit the  

poss ib i l i t y  of Fd = Fe . 
system unstable, we can only conclude tha t  Fd * Pe . 
may state the following theorem. 

The perturbation arethod, 

In  fac t ,  as Fd > Fe renders t he  damped 

Therefore, w e  

Theorem 3: 

The c r i t i c a l  load, Fe , of the undamped system 

(1) is an upper bound f o r  the c r i t i c a l  load, Fd , of 

the associated s l igh t ly  damped system when 6 is  

s u f f i c i e n t l y  small, 
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4. The General Case 

For an a r b i t r a r i l y  specified damping matrix G = tG,,j , system 

(2) may become self-excit ing.  That is, f o r  an i n f i n i t e l y  small value 

of F, the  frequency equation of t h i s  system may possess complex roots  

with negative imaginary parts. I n  these cases w e  s h e l l  agree t o  

define Fd = 0 as the damped c r i t i c a l  load of the system. 

On the  o ther  hand, the frequency equation of system ( 2 )  may 

y ie ld  roots  with only pos i t ive  imaginary p a r t s  for F = O ( 0 .  This 

ind ica tes  t ha t  t h e  damped system is s t ab le  f o r  small values of the 

load parameter P. However, as w e  increase F, one of these roots  

may move toward the imaginary l i ne  i n  the i w  plane. Therefore, f o r  

a ce r t a in  value of F, say Fd , the  frequency equation of system (2) 

may y ie ld  a non-zero, real root. In t h i s  case, i f  w e  then increase 

F beyond t h i s  c r i t i c a l  value Fd , the  frequency equation w i l l  have 

a root with negative imaginary p a r t  

f l u t t e r .  We s h a l l  r e f e r  t o  F as the  damped c r i t i c a l  load. On the  

bas i s  of the  above preliminaries i t  is now possible  t o  follow the  

same chain of arguments outlined i n  the previous sec t ion  and 

e s t ab l i sh  the following more general theorems. 

and the damped system w i l l  

d 

Theorem 4: 

The c r i t i c a l  load, Fe , of the undamped system 

(1) is  an upper bound f o r  the c r i t i c a l  load, Fd , of 

the damped system ( 2 )  when C is  s u f f i c i e n t l y  small. 

G = CG,,] need not be a symetric, pos i t i ve  d e f i n i t e  

matrix. 
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Theorem 5 :  

The cr i t ica l  load, Fe , of the undamped system 

(1) w i t h  W = 2 i s  an upper bound for the cr i t ica l  

load, Pd , of the associated damped system for all  

f i n i t e  values of when d e t  I G I - 0 . G = CG,,] 

need not be a synmetric, positive definite matrix. 
jk 



L 

5 .  Concludinp Remarks 

13 

From the  above r e s u l t s  w e  inmediately conclude tha t ,  i n  a l i n e a r  

system with N degrees of freedam, subjected t o  nonconservative forces ,  

not only slight viscous damping but a l l  s u f f i c i e n t l y  s m a l l  ve loc i ty  

dependent forces  have, i n  general, a des t ab i l i z ing  e f f ec t .  Moreover, 

t h e  damped cri t ical  load, Fd , is highly dependent upon t h e  s t ruc tu re  

of the matrix G = CG. 1 but is always bounded from above by the 

undamped c r i t i c a l  load Fe . 
as 8 - 0 , Fd is i n  general less than Fe . 
point  i n  more d e t a i l  f o r  a system w i t h  two degrees of freedom. 

Jk 
This ind ica tes  t h a t ,  even at the l i m i t  

Let us  explore t h i s  

For 6 f i n i t e ,  the  steady s t a t e  motion of the  system is  possible  

i f  t he  frequency of the o s c i l l a t i o n  s a t i s f i e s  the following equations 

(see equation (7)): 

2 

I n  t h i s  case, one may solve the second equation i n  (16) for u) as a 

function of F and then subs t i t u t e  the r e s u l t  i n t o  the  f i r s t  equation 

t o  obtain a re la t ionship  between F and e . I n  t h i s  manner a s t a b i l -  

i t y  curve, i n  the  F-e plane, may be constructed (see Figure 2). 

However, from theorem 1 we m e d i a t e l y  conclude t h a t ,  i n  general, 

t h i s  curve su f fe r s  a f i n i t e  discont inui ty  a t  6 = 0 . This means 

t h a t ,  although f o r  6 = 0 the c r i t i c a l  load is Fe , for C = 0 
+ the 
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c r i t i c a l  l o a d  is given by F which is, in general, l e s s  than F . 
Therefore, the point  F is, i n  general, an i so la ted  point i n  the  

F-e plane (Figure 2). 

i n t e rp re t a t ion  of t h i s  phenomenon i s  given by introducing the  con- 

cept  of the degree of i n s t ab i l i t y .  An in t e rp re t a t ion  based on the 

d e 

e 

In  reference E31 an appropriate physical 

energy of the system is  also given i n  L81 for systems with m o r e  

than two degrees of freedom. 
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